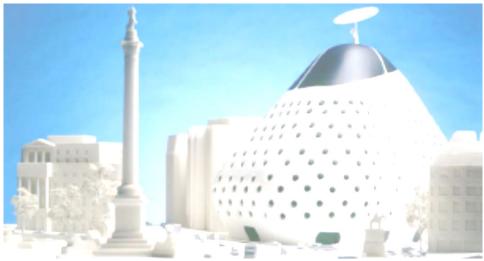
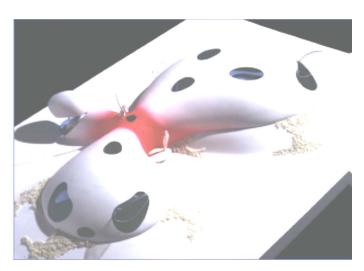
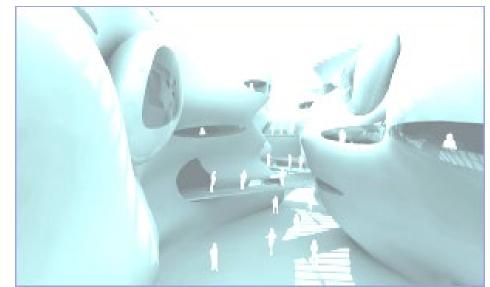
## EPFL


Prof. Anastasios P. Vassilopoulos

Advanced composites in engineering structures

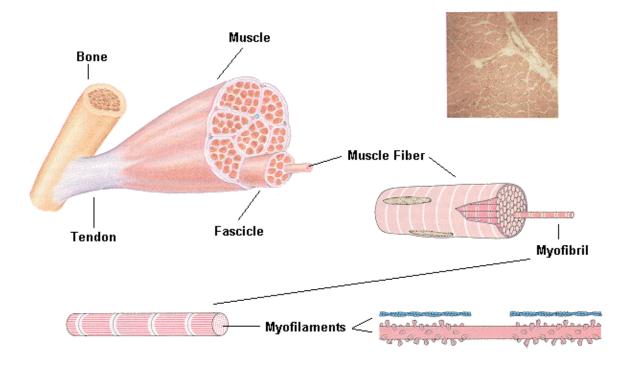
Lecture #2



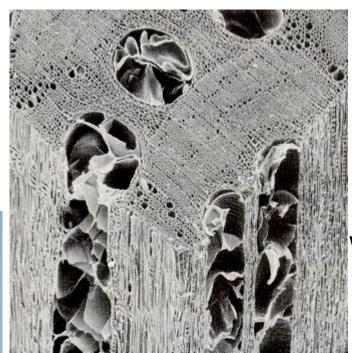





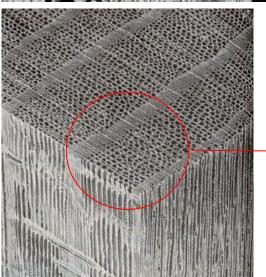


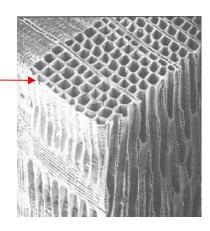


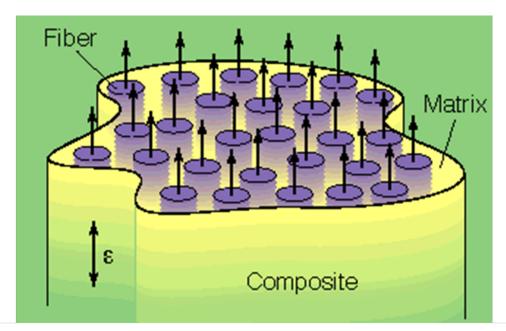

## Composite materials (Concept)


- An old concept-Natural composites
  - All natural materials (structures) that must bear load are composites (muscles, wood, bones...)





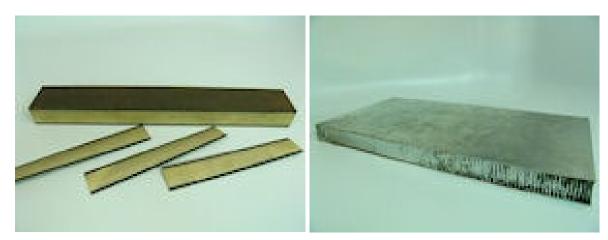




White oak



Structure of the yellow pine tree




## Advanced structural composites



Composites consist of one or more discontinuous phases embedded in a continuous phase. The discontinuous phase is usually harder and stronger than the continuous phase and is called the reinforcement or reinforcing material, whereas the continuous phase is termed the matrix.

## Typical examples of composites

- Fiberglass bars and plates
- Carbon/epoxy bars and plates
- Aluminum sandwich panels
- Carbon/polymer sandwich panels
- Synthetic fiber-reinforcement for concrete





## Composite in structural engineering

A new industry-engineering composites





## Composite in structural engineering

A new industry-engineering composites



## Composite in structural engineering



### FRP bridge

The Nelson Mandela Bridge





...the largest movable road bridge in FRP in the world.

https://www.mct.nl/en/projects/nelson-mandela-bridge-alkmaar/ https://www.nationalestaalprijs.nl/project/verkeersbrug-nelson-mandelabrug https://bruggenstichting.nl/tijdschrift/ouder/61-bruggen/bruggen-2017/664-vezelversterkt-kunststof-komt-over-de-brug

| Client    | Provincie Noord-Holland /<br>Gemeente Alkmaar              |
|-----------|------------------------------------------------------------|
| City      | Alkmaar                                                    |
| Country   | Netherlands                                                |
| Scope     | Total length 67 meters, lifting deck 22,5 x 14,5 m         |
| Period    | 2013 - 2016                                                |
| Expertise | Architecture, Project<br>Management, Structural Design     |
| Team      | Joris Smits, Sven Spierings,<br>Liesbeth Tromp, André Fase |

## FRP bridge

 Ooypoort bridge in Nijmegen, the Netherlands, with a span of 56m, is manufactured of polyester and glass fiber,





... it is among the longest single-span composite bridges in the world..

### Giant bathtub



- \* Application: Stedelijk Museum of Modern Art
- **Project Scope:** 185 composite panels
- **Manufacturing Process:** Vacuum Injection Molding
- **Construction:** 2012
- **Location:** Amsterdam

#### Rhyl Harbour Bridge



- **Application:** Pedestrian and cycle lifting bridge
- **Project Scope:** Two 30-meter-long bridge decks
- **Manufacturing Process:** Vacuum infusion molding
- Installation: 2013
- **Location:** Rhyl, Wales

#### The San Francisco Museum of Modern Arts



The facade consists of more than 700 FRP panels covering 5000 m<sup>2</sup> surface area.

Some of the individual FRP panels measure 1.5 m wide by 10 m in length, while the skin thickness is only 0.5 cm!



- Application: The San Francisco Museum of Modern Art
- **Project Scope:** 700 FRP cladding panels
- **Manufacturing Process:** Open Molding
- **Construction:** 2014-2015
- **Location:** San Francisco



Lamborghini Aventador monocoque chassis

#### Sourse:

http://www.lamborghini.com/en/models/aventador-lp-700-4/innovation-technology/chassis/







#### Royal Navy mine counter measures vessel - HMS Wilton: 450 tons - 46.3 m long - monolithic GRP

HMS Wilton was a world leader at the time of her construction in 1973. At 450 tons, she was then the world's largest reinforced plastic ship. Unofficially known as HMS Tupperware, HMS Indestructible, or just 'the plastic duck', HMS Wilton was built to the tried and tested Coniston-class mine hunter design (more usually called the Ton class minesweeper).

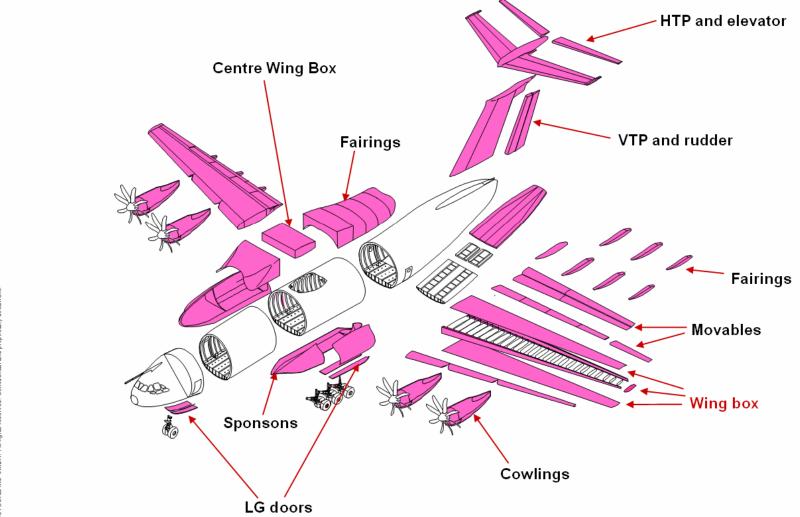
**Source:** <a href="http://www.tech.plym.ac.uk/sme/composites/marine.htm">http://www.tech.plym.ac.uk/sme/composites/marine.htm</a>



### Naval applications



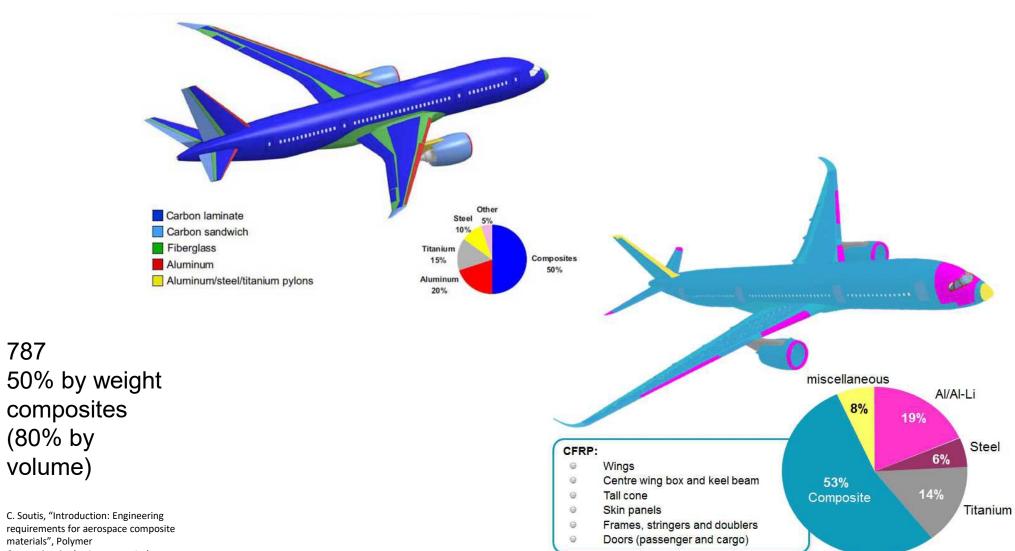







http://www.decision.ch/fr/realisations/construction-navale/

https://www.youtube.com/watch?v=v6ZRODV3K\_A


#### Introduction: Composite Parts A400M





AIRBUS DEUTSCHLAND GMBH. All rights reserved. Confide

#### **Boeing 787 Dreamliner and Airbus A350 XWB**



C. Soutis, "Introduction: Engineering requirements for aerospace composite materials", Polymer Composites in the Aerospace Industry, pp. 1-18, 2015.

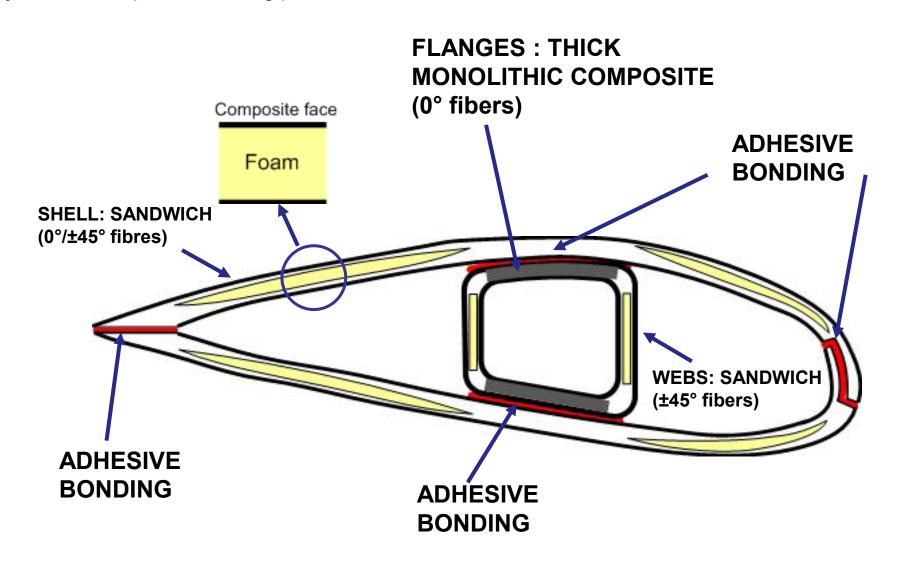
787

(80% by

volume)





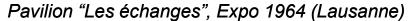

#### **Modern blades**

- consist of **different kinds of materials** (typically composite materials in monolithic or sandwich configuration)
- use various connections solutions between different substructures
- include many material or geometric transitions



#### Cross-section concepts: main spar

The two parts are bonded to a **load-carrying spar-beam** (box-beam) The main spar and the wing shells are manufactured separately and then joined in a separate bonding process.




## Technological advancements...



#### "New" materials for building construction: Synthetic polymers reinforced with fibers

House of the future, 1957 (California)







Market roof, 1967 (Argenteuil, France)

Futuro house, 1968 (Central Museum of Utrecht)

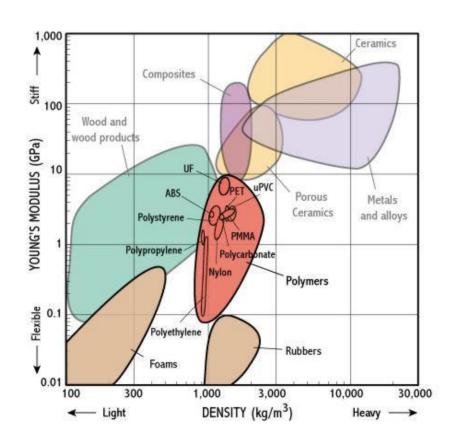


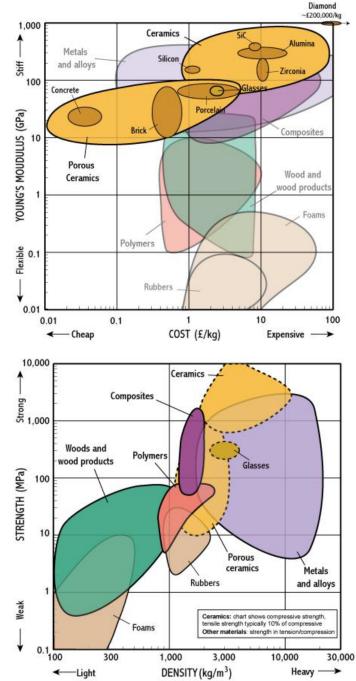


#### Experimental plastic house, Leningrad, 1962

https://www.reddit.com/r/RetroFuturism/comments/skjjsj/soviet\_individual\_plastic\_house\_from\_1961\_it\_was/




http://www.bubblemania.fr/en/des-concepts-maisons-plastiques/




Millennium Dome London, 2000

- **Lightweight:** leads to fuel saving, increase in payload, or increase in range which improves performances.
- Posses high strength and are elastic: are extremely strong, especially per unit of weight, when composites are bent, they want to naturally snap back into place. This feature is ideal for springs and is why composites are used in car leaf springs and in the limbs of archery bows.
- Good fatigue resistance: leads to enhanced life which involves saving in the long-term cost
  of the product.
- Good corrosion and chemical resistance: means fewer requirements for inspection which
  results in saving on maintenance cost. This is why the marine industry was one of the first to
  adopt the use of composites.
- **Non-conductive:** Some composites, e.g. GFRP are non-conductive. This is important in some applications, e.g. ladders.

#### "Ashby plots" for comparison of materials



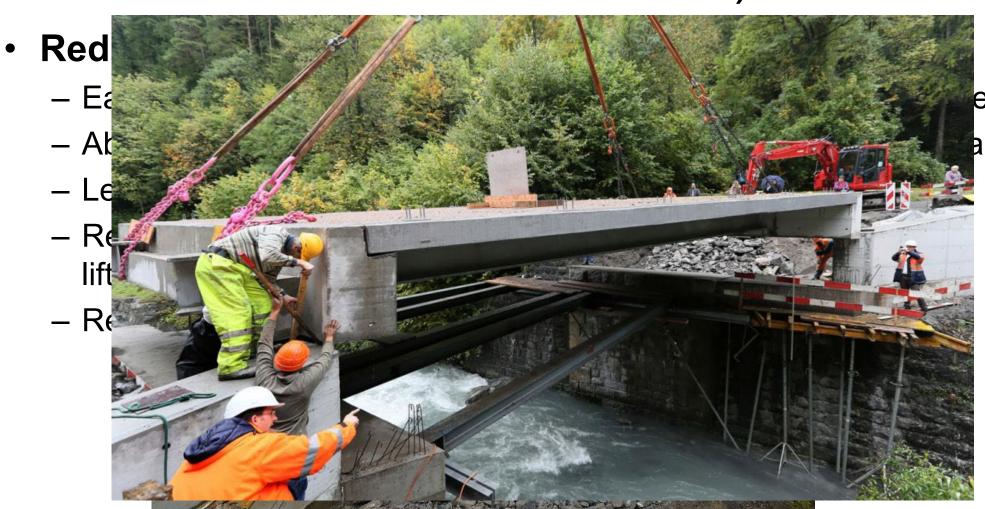


#### Free formability

- Architectural aspect
- New aesthetic possibilities
- Geometrically more efficient solutions

#### Special surface finishes

- Integrate special finishes and unusual effects
- Simulation of traditional materials: stone, granite...


#### Offsite fabrication and modular construction

- Better quality control
- Faster built times
- Manufacture concurrent with ground works on site



#### Reduced mass

- Easier, faster and more economic installation: Smaller cranes required
- Ability to bring larger sections on site: reducing assembly time and cost
- Less disruption during installation: Bridges...
- Reduction in size and cost of supporting structure, foundations, etc: City lifting, bridges
- Reduced energy in transportation to site

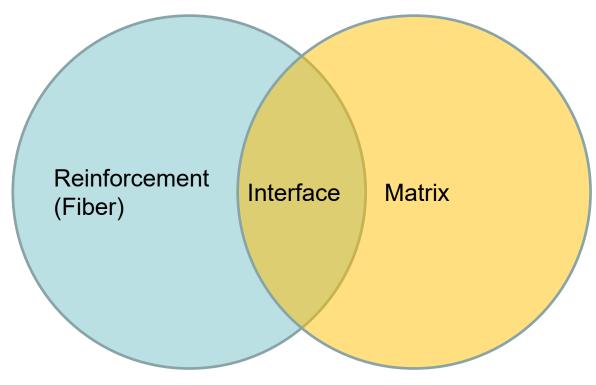


equired and cost

etc: City

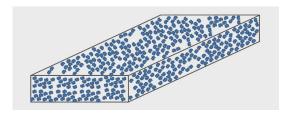
# Characteristics of composite materials (properties)

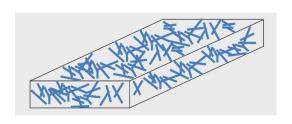
- Composite materials do not yield (their elastic limits correspond to the rupture limit).
- They <u>age</u> subjecting to humidity (epoxy resin can absorb water by diffusion up to 6% of its mass; the composite of reinforcement/resin can absorb up to 2%).
- They <u>do not corrode</u>, except in the case of contact "aluminum with carbon fibers" in which case galvanic phenomenon creates rapid corrosion.
- Composite materials are <u>not sensitive to the common chemicals</u> used in engines: grease, oils, hydraulic liquids, paints and solvents, petroleum.
- Have excellent <u>fire resistance</u> as compared with the light alloys with identical thicknesses. However, the smokes emitted from the combustion of certain matrices can be toxic.

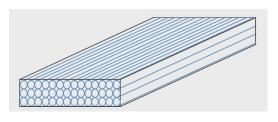

## Attractive composite characteristics

- Specific stiffness
- Strength
- Low mass
- Low cost production of complex shapes
- Corrosion resistance
- Good fatigue performance
- Electrical insulation
- Good ballistic performance
- Low CTE
- •

### Fiber reinforced composites


- Consist of two components
  - Fibers Load currying component
  - Matrix keep fibers together and transfer load
- The characteristics of composite materials resulting from the combination of reinforcement and matrix depend on: (Besides the type of the constituent material)
  - The proportions of reinforcements and matrix (rule of mixtures)
  - The form of the reinforcement (roving, mat etc.)
  - The fabrication process


## Composite Material concept




#### Roles:

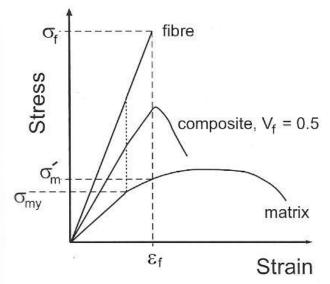
- Matrix
  - Holds fibers in position
  - Protects the fibers
  - Transfers loads to and from the fibers
- Fibers
  - Load carrying components
  - Provide stiffness
- Interface
  - Transmits load between matrix and fibers
  - Minimizes ingress of corroding agents
  - Controls debonding



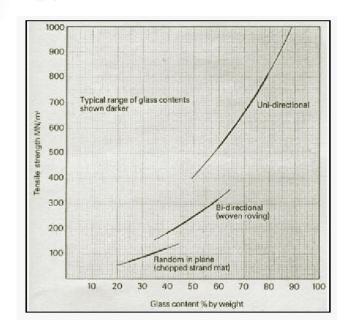


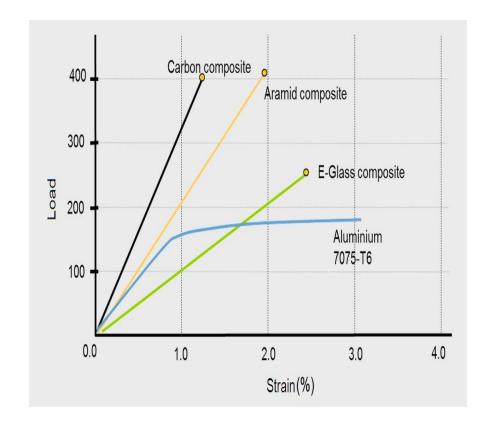


## Typical <u>fibre composite</u> properties (65% fibre + 35% epoxy resin matrix)


|                    | Density                | Modulus      | Strength | Ε/ρ           | $\sigma^*/\rho$ |
|--------------------|------------------------|--------------|----------|---------------|-----------------|
|                    | $ ho  \mathrm{kg/m^3}$ | <i>E</i> GPa | σ* MPa   | $\times 10^3$ | $\times 10^3$   |
| Carbon fibre (high | 1700                   | 222          | 1630     | 133           | 977             |
| modulus)           |                        |              |          |               |                 |
| Carbon fibre (high | 1600                   | 151          | 2080     | 93            | 1284            |
| strength)          |                        |              |          |               |                 |
| Kevlar 49          | 1400                   | 82           | 1820     | 65            | 1300            |
| E-glass            | 2100                   | 50           | 1086     | 24            | 515             |
| S-glass            | 2100                   | 57           | 1358     | 27            | 644             |
| Boron              | 2100                   | 207          | 2210     | 97            | 1030            |
| polyethylene       | 970                    | 77           | 1700     | 79            | 1753            |

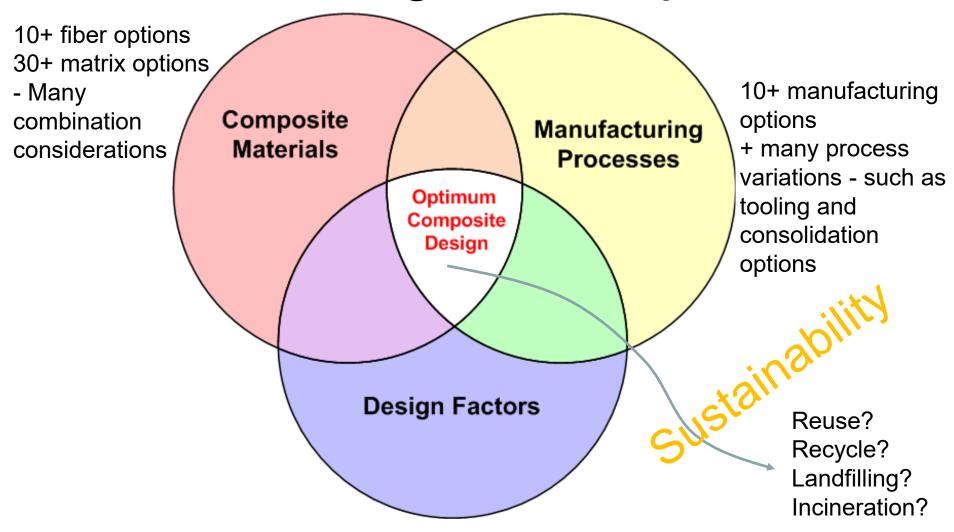
"Specific" mechanical properties


#### Some metals for comparison:


| Mild steel      | 7900 | 210 | 450 | 27 | 57  |
|-----------------|------|-----|-----|----|-----|
| Aluminium alloy | 2800 | 70  | 450 | 25 | 161 |
| Titanium        | 4500 | 110 | 960 | 24 | 213 |

#### Strength and stiffness of composites




(a) Brittle-fibre/ductile-matrix





Images (partly) from "Composite Design Fundamentals" David Richardson

## The challenge of composites



More complex design due to anisotropic materials, Link between manufacture, and material properties

Taylor made material!

## Sustainability

Reduce

Reduce the amount of the waste

Reuse

Use materials repeatedly

Recycle

Make new products after recycling of the material

Recover

Recover energy from scrap

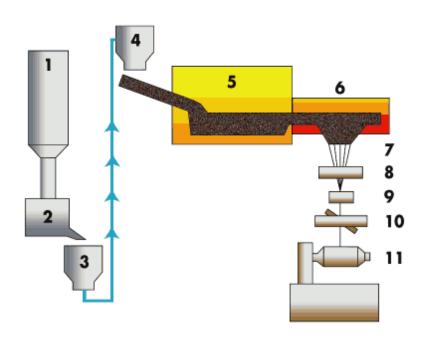
Landfill

Safe disposal (?)

### **Fibers**

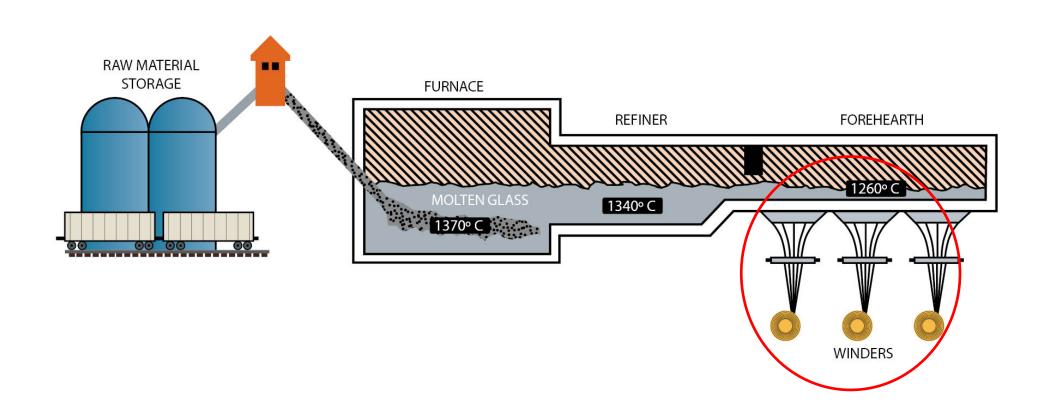
### Principal fiber materials are

- Glass
- Carbon (high modulus or high strength)
- Aramid or Kevlar, (very light)
- Boron (high modulus or high strength)
- Silicon carbide (high temperature resistant)
- Basalt


## Manufacturing of fibers

- Glass fiber: The filaments are obtained by pulling the glass (silicon + sodium carbonate and calcium carbonate; T > 1000°C) through the small orifices of plate made of platinum alloy.
- Kevlar fiber: This is an aramid fiber, yellowish color, made by DuPont de Nemours (USA). These are aromatic polyamides obtained by synthesis at-10°C, then fibrillated and drawn to obtain high modulus of elasticity.
- Carbon fiber: Filaments of polyacrylonitrile or pitch (obtained from residues of the petroleum products) are oxidized at high temperatures (300°C), then heated further to 1500°C in a nitrogen atmosphere. Black and bright filaments are obtained. High modulus of elasticity is obtained by drawing at high temperature.

## Manufacturing of fibers


- Boron fiber: Tungsten filament (diameter 12 mm) serves to catalyze the reaction between boron chloride and hydrogen at 1200°C. The boron fibers obtained have a diameter of about 100 mm (the growth speed is about 1 micron per second).
- Silicon carbide: The principle of fabrication is analogous to that of boron fiber: chemical vapor deposition (1200°C) of methyl trichlorosilane mixed with hydrogen.

### Production of Basalt fibers



- 1. Crushed stone silo
- 2. Loading station
- 3. Transport system
- 4. Batch charging station
- Initial melt zone
- 6. Secondary heat zone with precise temperature control
- 7. Filament forming bushings
- 8. Sizing applicator
- 9. Strand formation station
- 10. Fiber tensioning station
- 11. Automated winding station.

## Production of glass fibers



## Production of glass fibers

| Glass Fiber Mechanical Properties |         |         |         |         |         |         |  |
|-----------------------------------|---------|---------|---------|---------|---------|---------|--|
|                                   | E-glass | R-glass | HS2,HS4 | T-glass | S-1     | S-2     |  |
| Tensile<br>Strength<br>GPa        | 1.9-2.5 | 3.1-3.4 | 3.1-4.0 | 4.0-4.2 | 3.8-4.1 | 4.3-4.6 |  |
| Tensile<br>Modulus<br>GPa         | 69-80   | 86-89   | 82-90   | 84      | 85-87   | 88-91   |  |

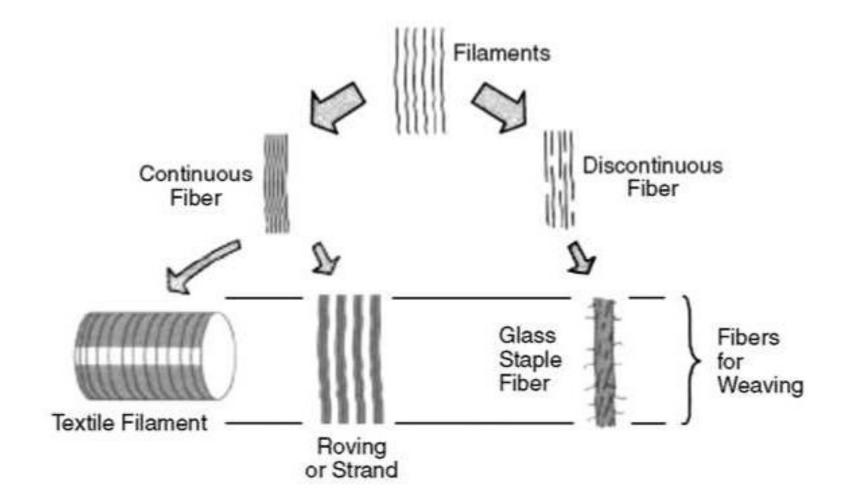
| Composition of Selected Glass Fiber Types by Weight |                    |                      |               |           |            |          |  |
|-----------------------------------------------------|--------------------|----------------------|---------------|-----------|------------|----------|--|
|                                                     | E-glass<br>w/Boron | E-glass<br>w/o Boron | ECR-<br>glass | S-2 glass | R-glass    | Quartz   |  |
| SiO <sub>2</sub>                                    | 52-56%             | 59%                  | 54-62%        | 64-66%    | 60-65%     | 99.9999% |  |
| Al <sub>2</sub> O <sub>3</sub>                      | 12-16%             | 12.1-13.2%           | 9-15%         | 24-26%    | 17-24%     | -        |  |
| B <sub>2</sub> O <sub>3</sub>                       | 5-10%              | -                    | -             | -         | -          | -        |  |
| CaO                                                 | 16-25%             | 22-23%               | 17-25%        | -         | 5-11%      | -        |  |
| MgO                                                 | 0-5%               | 3.1-3.4%             | 0-5%          | 8-12%     | 6-12%      | -        |  |
| ZnO                                                 | -                  | -                    | 2.9%          | -         | <b>-</b> 8 | -        |  |
| Na <sub>2</sub> O                                   | 0-1%               | 0.6-0.9%             | 1.0%          | 0-0.1%    | 0-2%       | -        |  |
| K <sub>2</sub> O                                    | trace              | 0-0.2%               | 0.2%          | -         | 0-2%       | -        |  |
| TiO <sub>2</sub>                                    | 0.2-0.5%           | 0.5-1.5%             | 2.5%          | -         |            | -        |  |
| Zr <sub>2</sub> O <sub>3</sub>                      | -                  | -                    | -             | 0-1%      | -          | -        |  |
| Li <sub>2</sub> O                                   | -                  | -                    | -             | -         |            | -        |  |
| Fe <sub>2</sub> O <sub>3</sub>                      | 0.2-0.4%           | 0.2%                 | 0.1%          | 0-0.1%    | -          | - [      |  |
| F <sub>2</sub>                                      | 0.2-0.7%           | 0-0.1%               | trace         | -         |            | -        |  |

### Glass fibers

- Short fibers, with lengths of a few centimetres or fractions of millimetres are felts, mats, and short fibers used in injection moulding.
- Long fibers, which are cut during time of fabrication of the composite material, are used as they are or as woven fabric





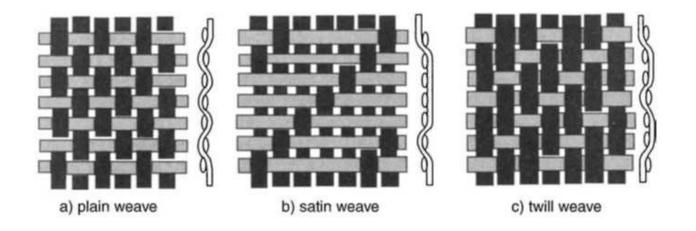


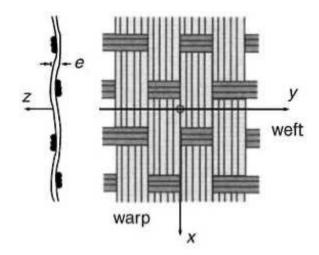



Roving Yarn

Chopped strand Mat

**Fabric** 





### Properties of commonly used reinforcements

| Reinforcements                       | Fiber<br>Diameter<br>d( <b>µ</b> m) | Density<br><b>p</b> (kg/m³) | Modulus of<br>Elasticity<br>E(Mpa) | Shear<br>Modulus<br>G(Mpa) |      | Tensile<br>Strength<br><b>σ</b> υk (Mpa) | Elongation<br>E(%) |
|--------------------------------------|-------------------------------------|-----------------------------|------------------------------------|----------------------------|------|------------------------------------------|--------------------|
| "R" glass,<br>high<br>performance    | 10                                  | 2500                        | 86,000                             |                            | 0.2  | 3200                                     | 4                  |
| "E" glass,<br>common<br>applications | 16                                  | 2600                        | 74,000                             | 30,000                     | 0.25 | 2500                                     | 3.5                |
| Kevlar 49                            | 12                                  | 1450                        | 130,000                            | 12,000                     | 0.4  | 2900                                     | 2.3                |
| "HT"                                 | 7                                   | 1750                        | 230,000                            | 50,000                     | 0.3  | 3200                                     | 1.3                |
| graphite,<br>high<br>strength        |                                     |                             |                                    |                            |      |                                          |                    |
| "HM"<br>graphite,<br>high<br>modulus | 6.5                                 | 1800                        | 390,000                            | 20,000                     | 0.35 | 2500                                     | 0.6                |
| Boron                                | 100                                 | 2600                        | 400,000                            |                            |      | 3400                                     | 0.8                |
| Aluminum                             | 20                                  | 3700                        | 380,000                            |                            |      | 1400                                     | 0.4                |
| Aluminum silicate                    | 10                                  | 2600                        | 200,000                            |                            |      | 3000                                     | 1.5                |
| Silicon<br>carbide                   | 14                                  | 2550                        | 200,000                            |                            |      | 2800                                     | 1.3                |
| Polyethylene                         |                                     | 960                         | 100,000                            |                            |      | 3000                                     |                    |

### Fiber reinforcements

- In forming fiber reinforcement, the assembly of fibers to make fiber forms for the fabrication of composite material can take the following forms:
- Unidirectional: unidirectional tows, yarns, or tapes
- Bidirectional: woven or nonwoven fabrics (felts or mats)
- **Tridirectional:** fabrics (sometimes called *multidimensional fabrics*) with fibers oriented along many directions (>2)





### Carbon fiber demands

| Table 3              | Carbon Fiber Demand Forecast, Aerospace and Defense, metric tonnes |        |        |  |  |  |
|----------------------|--------------------------------------------------------------------|--------|--------|--|--|--|
| 117107000000         | 2011                                                               | 2015   | 2020   |  |  |  |
| Commercial aircraft  | 4,300                                                              | 7,910  | 13,290 |  |  |  |
| Military fixed-wing  | 500                                                                | 770    | 1,000  |  |  |  |
| Rotorcraft           | 370                                                                | 400    | 460    |  |  |  |
| Business<br>Aircraft | 240                                                                | 590    | 720    |  |  |  |
| General<br>Aviation  | 600                                                                | 1,000  | 1,250  |  |  |  |
| Jet engines          | 380                                                                | 1,660  | 1,930  |  |  |  |
| Space<br>and launch  | 450                                                                | 520    | 550    |  |  |  |
| Carbon-carbon        | 160                                                                | 240    | 500    |  |  |  |
| Total:               | 7,000                                                              | 13,100 | 19,700 |  |  |  |

| Table 4              | Carbon Fiber Demand Forecast,<br>Industrial, metric tonnes |        |         |  |  |  |
|----------------------|------------------------------------------------------------|--------|---------|--|--|--|
|                      | 2011                                                       | 2015   | 2020    |  |  |  |
| Wind energy          | 12,280                                                     | 37,600 | 67,400  |  |  |  |
| Oil and gas          | 1,380                                                      | 2,700  | 10,650  |  |  |  |
| Molding compounds    | 5,750                                                      | 7,700  | 10,170  |  |  |  |
| Industrial rollers   | 450                                                        | 700    | 820     |  |  |  |
| Pressure vessels     | 1,650                                                      | 7,250  | 12,520  |  |  |  |
| Automotive           | 2,700                                                      | 4,000  | 5,600   |  |  |  |
| Civil infrastructure | 1,900                                                      | 2,900  | 3,900   |  |  |  |
| Pultrusion           | 1,300                                                      | 2,200  | 3,710   |  |  |  |
| Misc. energy         | 180                                                        | 500    | 1,520   |  |  |  |
| Medical/prosthetics  | 240                                                        | 320    | 440     |  |  |  |
| Tooling              | 2,000                                                      | 2,700  | 3,960   |  |  |  |
| Total:               | 29,830                                                     | 68,570 | 120,690 |  |  |  |

### **Matrices**

- **Polymeric matrix:** thermoplastic resins (polypropylene, polyphenylene, sulfone, polyamide, polyetheretherketone, etc.) and thermoset resins (polyesters, phenolics, melamines, silicones, polyurethanes, epoxies).
- Mineral matrix: silicon carbide, carbon. Can be used at high temperatures
- Metallic matrix: aluminum alloys, titanium alloys
- Ceramic matrix: Boron nitride, boron carbide...

### Properties of commonly used matrices

**Table 1.4 Properties of Commonly Used Resins** 

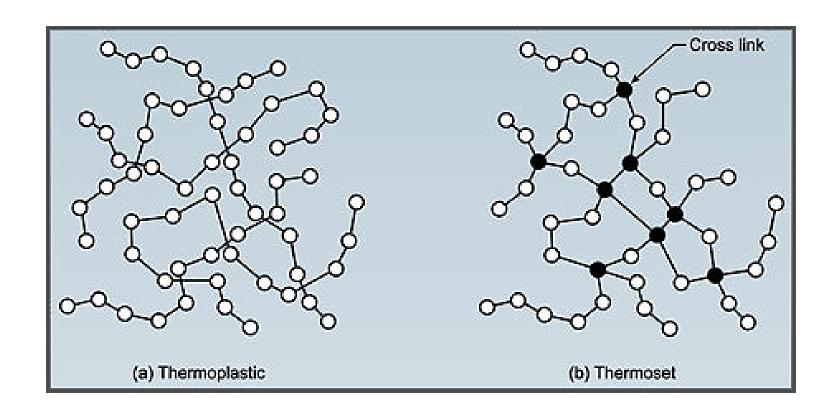
| Resins                            | Density <pre>p</pre> (kg/m³) | Elastic<br>Modulus<br>E(Mpa) | Shear<br>Modulus<br>G(Mpa) | Poisson<br>Ratio <b>v</b> | Tensile<br>Strength<br><b>σ</b> υlt (Mpa) | Elongation<br>E%       |
|-----------------------------------|------------------------------|------------------------------|----------------------------|---------------------------|-------------------------------------------|------------------------|
|                                   |                              |                              |                            |                           | Thermo                                    | osets                  |
| Ероху                             | 1200                         | 4500                         | 1600                       | 0.4                       | 130                                       | 2 (100°C)<br>6 (200°C) |
| Phenolic                          | 1300                         | 3000                         | 1100                       | 0.4                       | 70                                        | 2.5                    |
| Polyester                         | 1200                         | 4000                         | 1400                       | 0.4                       | 80                                        | 2.5                    |
| Polycarbonate                     | 1200                         | 2400                         |                            | 0.35                      | 60                                        |                        |
| Vinylester                        | 1150                         | 3300                         |                            |                           | 75                                        | 4                      |
| Silicone                          | 1100                         | 2200                         |                            | 0.5                       | 35                                        |                        |
| Urethane                          | 1100                         | 700 to<br>7000               |                            |                           | 30                                        | 100                    |
| Polyimide                         | 1400                         | 4000 to<br>19,000            | 1100                       | 0.35                      | 70                                        | 1                      |
|                                   |                              |                              |                            |                           | Thermop                                   | lastics                |
| Polypropylene<br>(pp)             | 900                          | 1200                         |                            | 0.4                       | 30                                        | 20 to 400              |
| Polyphenylene<br>sulfone (pps)    | 1300                         | 4000                         |                            |                           | 65                                        | 100                    |
| Polyamide (pa)                    | 1100                         | 2000                         |                            | 0.35                      | 70                                        | 200                    |
| Polyether sulfone (pes)           | 1350                         | 3000                         |                            |                           | 85                                        | 60                     |
| Polyetherimide (pei)              | 1250                         | 3500                         |                            |                           | 105                                       | 60                     |
| Polyether-ether-<br>ketone (peek) | 1300                         | 4000                         |                            |                           | 90                                        | 50                     |

#### Polymeric matrices

**Thermoset materials** are obtained from a chemical reaction between the resin and the hardener to form a hard infusible product.

**Polyester**: easy to process (does not require post curing), inexpensive **Vinyl ester**: cost and strength intermediate between polyester and epoxy

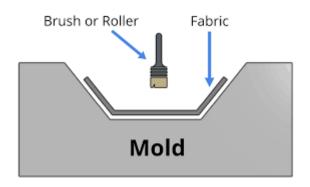
Epoxy: best mechanical properties, less shrinkage, expensive


| Advantages      | Disadvantages                                                                      |
|-----------------|------------------------------------------------------------------------------------|
| Easy to process | Long curing times – Limited toughness<br>Exotherm during curing (thick components) |

**Thermoplastic materials** soften and melt with heating, then hardening again with cooling. The softening process can be repeated without any significant degradation of the material properties.

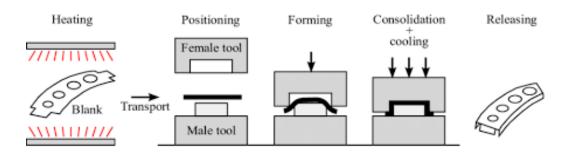
PP or L-PET: used in film or fibre form and consolidated by heating and vacuum Reactive thermoplastics (APA-6): suitable for liquid moulding (similar to thermosets)

| Advantages                     | Disadvantages                         |
|--------------------------------|---------------------------------------|
| High toughness - Recyclability | High process temperature and pressure |


### Polymeric matrices



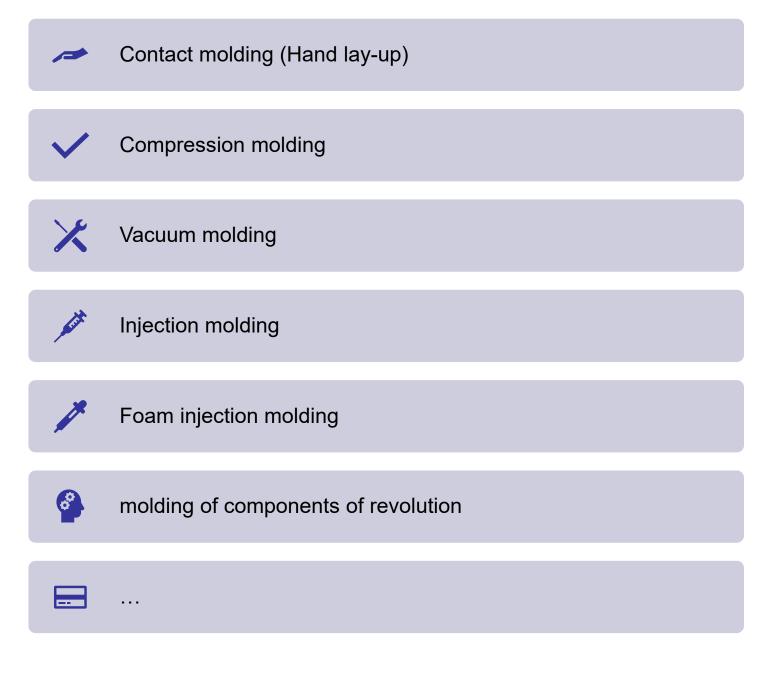
# Manufacturing




## Methods for composites' manufacturing



### **Molding processes**


Material is placed in a mould...



### Forming processes

Material is passing through a mold to take the final shape...

#### **Molding processes**



#### Forming processes



Sheet forming



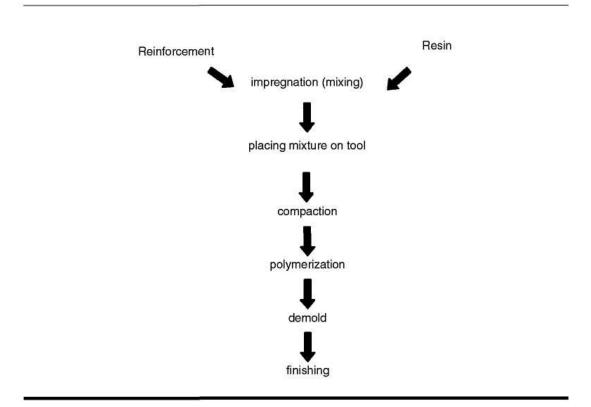
Profile forming (Pultrusion)



Stamp forming



Pre-forming by threedimensional assembly Impregnation using liquid Impregnation using gas

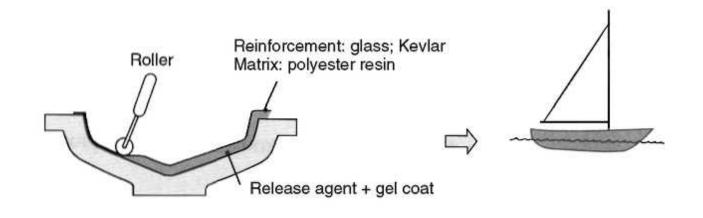



Cutting of fabric and trimming of laminates



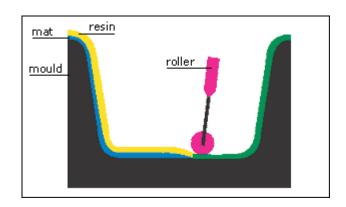
. .

### Molding processes

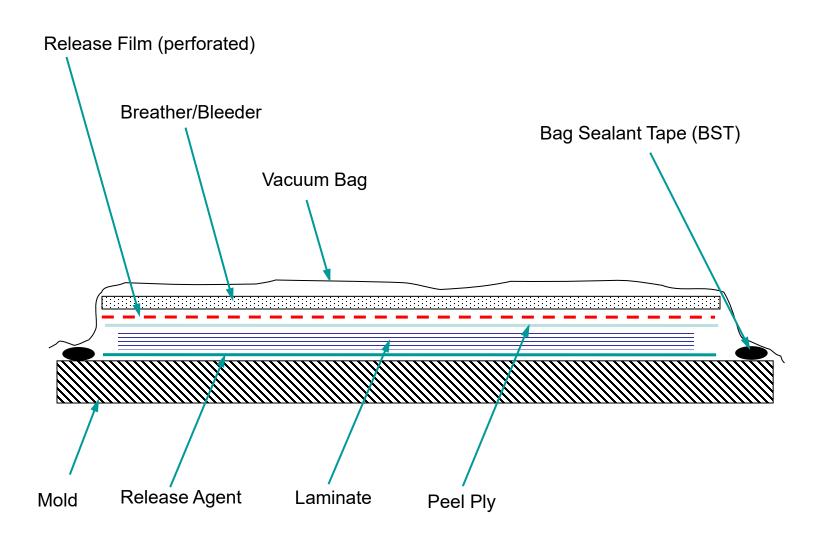



Forming by molding processes varies depending on the nature of the part, the number of parts, and the cost. The mold material can be made of metal, polymer, wood etc, but in many cases is made by the same material as the component



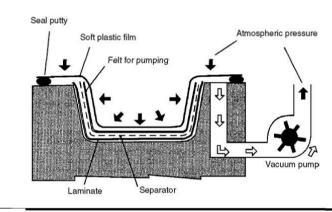

Steps in Molding Process

## Molding process (hand lay-up)

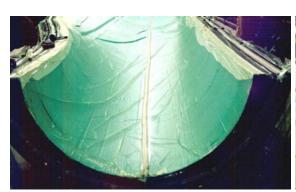



**Contact Molding** 

It is recommended for small and medium volumes, for which the investment in moulds and equipment should not be very high.




#### **Vacuum Bag Molding**




## Vacuum molding

Is applied under a piece of plastic. The piece is compacted due to the action of atmospheric pressure, and the air bubbles are eliminated. Porous fabrics absorb excess resin. The entire material is polymerized by an oven or by an **autoclave** under pressure to obtain better mechanical properties.



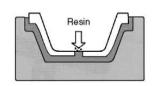
Vacuum Molding







## Resin injection molding

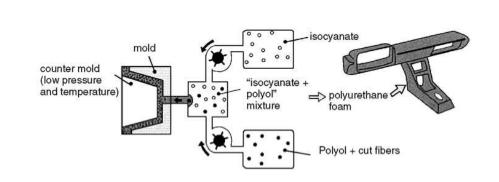

#### Injection molding

The process is used to produce large quantities of identical plastic items. One of the most common types of **thermoplastics** used in injection molding is **high impact polystyrene** (HIPS).

Injection molding is the most important plastics manufacturing process.

It produces such small products as bottle tops; sink plugs, children's toys, containers, model kits, disposable razors and parts of cameras.

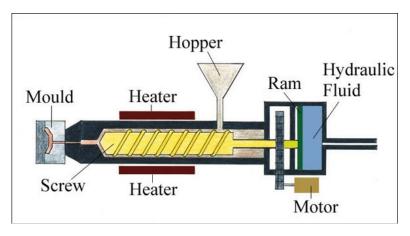
It is also used to manufacture larger items such as dustbins, and milk crates.






Resin Injection Molding




## Structural foam injection



Foam Injection

Structural foam molding is a derivative of the injection molding process. Large structural parts often require thicker walls than standard injection molding can produce. Structural foam molding allows for the injection molding of thick wall parts through the addition of a foam agent, thus the term structural foam molding. Any injection moldable thermoplastics can be structurally foam moulded.







## Other molding processes

Bottles and containers

Automotive fuel tanks

Venting ducts

Watering cans

Boat fenders etc







### Molding of components of revolution

### Centrifugal molding

 Fabrication of tubes. Allows homogeneous distribution of resin with good surface conditions

### Filament winding

- Can be integrated into a continuous chain of production and can fabricate tubes of long length.
- For pieces which must revolve around their midpoint, winding can be done on a mandrel...



Filament winding

## Sheet forming/vacuum forming

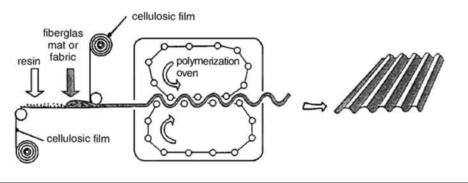
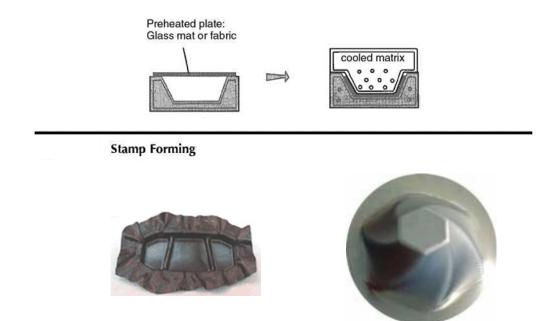
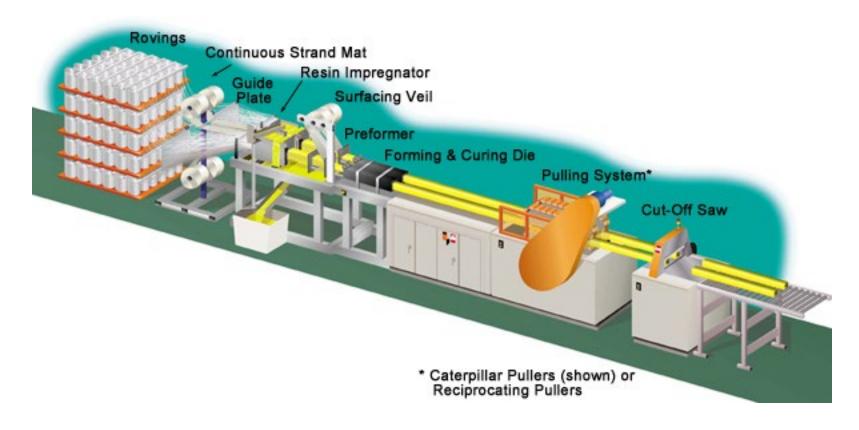





Figure 2.13 Sheet Forming





# Profile forming (Pultrusion)



### Interesting videos - sources

- NASA 360 Composite materials
  - https://www.youtube.com/watch?v=tZhH2B-EI1I
- Composite materials intro by JEC
  - https://www.youtube.com/watch?v=dbywZ4PJ3QA
- Carbon Fiber Construction /Inside Koenigsegg
  - https://www.youtube.com/watch?v=504l\_hJDFc
     k

### Interesting videos and links

Vacuum bagging process

https://www.youtube.com/watch?v=jfuaQK5YdeU

pultrusion

https://www.youtube.com/watch?v=4MoHNZB5b Y

Filament winding

https://www.youtube.com/watch?v=wcdBTq2TpPc

https://www.youtube.com/watch?v=1A3vaJaNDLY

https://www.youtube.com/watch?v=PGGiuaQwcd8

https://www.youtube.com/watch?v=504l hJDFck

Carbon vs. Glass vs. Kevlar for automotive applications

https://www.youtube.com/watch?v=KHXVf0SaJpA

Links

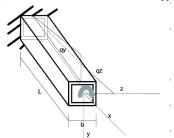
https://german-advanced-composites.com/

http://compositeslab.com/

## **Projects**

### Demonstration Project

- Design of a thin wall beam under biaxial loading by using CFRP T300/N5208
- Laminate stacking sequence: [0<sub>n</sub>/±45<sub>m</sub>]<sub>s</sub>


**»** L-12m

**b**=0.7m (square section)

y qy=0.694x kN/m

qx=0.046x kN/m

T=200 kNm



Use the quadratic failure criterion, safety factor 1.5

Tensile strain < 0.3%

Compressive strain <-0.2%

https://www.youtube.com/watch?v=P56lxjBeDuk

https://www.youtube.com/watch?v=l3\_zdodzuaw

https://www.youtube.com/watch?v=QQvYogFP9mw

#### **Potential project titles:**

Hydrofoil bike:

https://www.youtube.com/watch?v=yLboyOqi6R8

Composite table

Composite skateboard

Composite bridge deck

Any structural design project